葡京赌场官网

在线英语

当前位置:主页 > 在线英语 >

移动互联和未来的物联网让连接无所不在

来源:未知 作者:admin 时间:2018-09-30 09:21

  翻译也可以看做一种预测问题。AI出现之前的机器翻译,强调的是如何自上而下,从规则的角度去让机器理解语法,也是逐词对应的翻译。AI处理翻译问题,同样可以转化成预测问题:预测一个资深的翻译,会怎么翻译处理一个词、一段话、一篇文章。从词上升到句子,上升到段落,还要处理语境,这样机器处理语言的方式就和以前完全不同,机器翻译的准确度也会显著提升。在医学领域,X光和CT这样的检查,是帮助医生去判断病人是否有肿瘤的重要依据,当医生无法确定肿瘤是良性还是恶性的时候,需要对病灶做生理切片检查的小手术。如果AI分析检查片子的能力增强,预测肿瘤的准确度提高,手术的必要性会越来越低。 《经济学人》去年出了一期很经典的封面,封面里将全球各大高科技平台企业如谷歌、亚马逊之许描绘成正在采油的钻井,寓意很明显,在数字经济时代,大平台正在开采数字化的石油——大数据,而开采出来的大数据则用于人工智能(AI),因为AI会是数字化时代的电。
 
  也有人用狂歌热舞(DANCE)这个词来形容AI主导的数字经济时代。DANCE是五个英文词的缩略语,分别是大数据(data)、算法/人工智能(al-gorithms/AI)、网络(networks)、云(cloud)以及硬件呈指数级的性能改善(exponential improvements in hard-ware)。其实DANCE的五点缺一不可,恰恰是大量数据产生,算法不断更新,移动互联和未来的物联网让连接无所不在,云端让数据的存储和使用更方便,再加上硬件的不断更新升级,推动了这样一个科技以几何级数增长变化的时代。而数字经济时代的五点要素中,AI是贯穿始终的应用技术,也成为当下各个领域跨界研究的显学。
 
  要理解AI,除了从技术角度出发,了解机器学习神经网络等前沿技术的发展之外,也需要站在更广阔领域从多种不同视角去观察和分析,最近有四本书从不同的角度剖析了AI的特点,联系起来勾勒出清晰的AI发展与应用的图谱。这四本书分别是从数字工程师的视角看待AI发展的《AIQ》、经济学家分析AI作为一项通用技术将给商业带来改变的《预测机器》(Prediction Machine)、咨询师眼中AI当下的应用场景《人+机器》(Human + Machine),以及目前在国内很畅销的麻省理工学院物理学教授泰格马克畅想AI未来的《生命3.0》。
 
  之所以说AI是未来的电,因为AI和电力一样,将是改变工作和生活方方面面的一项通用技术。如果用简单的供求关系来分析,当一项技术变得够便宜,就会带来足够多的新应用;此外当一项技术变得够便宜之后,跨界的应用也会不断兴起。电力作为工业经济时代的通用技术就是如此。
 
  1800年,退休的美国首任总统华盛顿的别墅一年需花费一万多美元购买蜡烛照明。100年之后,同样一栋别墅一年的照明费用只有100年前的四百分之一。这是新技术变得日益便宜之后带来的普及效果。华盛顿时代只有富人才能晚上点得起蜡烛夜读,电力普及时代任何一个大都市的家庭都不会为电费而烦恼。
 
  《预测机器》的三位作者都是来自多伦多大学管理学院的教授,他们认为AI就是下一个通用技术,而AI越来越便宜,带来最直接的效果就是“预测”的成本将越来越低,从而给商业流程和商业模式带来全新的变化,就好像100多年前电的普及一样。
 
  如果说AI的最大特点是更好地解决预测问题,思考商业模式创新就需要把商业面临的各种实际问题转变成预测问题来思考。比如说,无人驾驶是不是可以看做预测问题?又比如说,翻译是不是预测问题?
 
  回答都是肯定的。在AI看来,无人驾驶就是怎样去培养机器能够更好地去预测一个经验丰富的老司机如何应对各种复杂多变的道路环境。换言之,如果机器能够很好地学会老司机适应各种不同环境应对道路上各种突发情况的能力,那么就能很好地解决无人驾驶问题。这也是为什么共享出行企业能在自动驾驶领域有所作为的原因,因为可以捕捉大量司机的驾驶行为,并以此培养无人驾驶AI。
 
  更准确地预测也可能颠覆整个电商领域的商业模式。如果电商可以准确预测消费者的需求,商业模式可以有什么变化?目前,电商已经可以比较准确地预测一定区域内用户对一些大宗商品比如说肥皂或者洗衣粉的需求,并因此可以在靠近社区的仓库中提前布货。未来,如果预测的准确度可以进一步提升,像亚马逊这样的电商巨头很可能不再需要用户在线或者在手机上搜索下单,而是直接把用户需要的商品送到客户家里。因为准确度非常高,配送十件商品至少有九件满足客户的需求,亚马逊只要做好一件商品的退货服务即可。
 
  人人都要培养AIQ
 
  如果说IQ是用来测量一个人的智商,EQ用来评价一个人的情商,那么AIQ就是评价一个人对人工智能的认知。《AIQ》的两位作者都是数字工程师,他们认为要适应未来“人+机器”的工作场景,每个人都需要培养AIQ,提升对AI的认知,以便更容易适应科技快速迭代改变的未来。此外,人类还需要有能力去监督AI,在“人+机器”的协作中,成为关键的一环,要做到这一点的前提也必须对AI和数据科学有基本的认知。
 
  培养AIQ首先要建立对当下AI发展的认知。很多人把AI看得神秘莫测,的确现在AI可以做很多神奇的事情,比如说图像识别、语音识别、辅助驾驶、自动翻译等等,在一些情况下做的比大多数人还要好。但目前的AI仍然并不具备人类的那种聪明,它只听得懂一种语言——数字。
 
  AI可以处理各种信息,只要输入的是数字就行。所以AI系统要能起作用,需要将各类不同输入都变成可以处理的数字语言,数据工程师把这种过程称为“特征工程学”,比如说把图像和语言的数字特征提取出来,变成机器听得懂的语言。
 
  以自然语言识别为例。以前处理语言的思路是自上而下的编程思路,希望灌输给机器所有的语言规则,同时穷尽任何特例。结果几十年语言识别都没有大进步,因为语言其实太随意、太复杂了。AI的自然语言识别,完全走了另外一条路,让机器做最擅长的事情,找到文字与文字之间的相关性。机器回答的是一个最基本的问题,能不能让有相同意思的词,对应的数字也类似?当机器可以给每个单词和词组一个描述性的数字后,就可以用数字的加减乘除来帮助算法做出正确的判断。比如说,如果问机器一个问题:英国的伦敦,对应的词应该是意大利的什么?机器就可以这么计算:伦敦-英国+意大利=罗马,因此得出罗马这个正确答案。
 
  现在的AI,无论是亚马逊的Alexa,或者苹果的Siri,都并不懂得语言的含义,但是却能准确判断文字之间的相关性。不究原因,只强调结果,AI能带来高效率,而我们暂时远不用担心它能和我们有一样的智慧。
 
  这也是培养AIQ的第二个要点,不用过早担心AI是否会取代人类,因为现在的AI发展距离通用机器智能(AGI),距离赶上人类的智能还很远。数字工程师现在要花90%的时间用于处理数据,把非标的数据变成机器可以读懂的结构化数据,只有10%的时间用在推进AI的发展上。因为AI只听得懂数字,无论是图像还是文字的识别,都是找出它们的数字属性,然后让AI做最擅长的事:快速地计算和找到准确的关联。
 
  培养AIQ的第三点,需要理解人与现在的AI之间到底有哪些优势和劣势。
 
  十几年前,当时担任美国国防部长的拉姆斯菲尔德曾经特别就美军在伊拉克面临的风险做过一个四个象限图的分析,分别是美军知道美军自己知道的风险(已知的已知);美军知道美军还没有掌握的风险(已知的未知);美军并不知道自己已经掌握的风险(未知的已知),以及美军根本不知道自己还不知道的风险(未知的未知)。
 
  如果以美国掌握的全球恐怖主义信息为例,第一种风险是美国知道本拉登建立了基地组织;第二种风险是美国知道自己并不知道本拉登基地组织的目标到底是什么;第三种风险是CIA已经知道与本拉登相关的人曾经在美国学习飞行,并且再次入境美国,但是并没有就这一重要信息做出分析,因此美国的决策者并不知情;第四种风险则是美国根本无法预测2001年纽约的911事件会发生。
 
  同样,套用这四个象限分析,也可以清晰地分辨人与机器之间的差别。
 
  应用场域最广的领域是“已知的已知”领域,即有着大量数据,而我们也很清楚知道如何做出好的预测的领域,比如说防欺诈、医疗诊断等等。这些领域AI已经大规模取代人,因为机器从大数据中找出相关性的速度比人要快得多。
 
  如果反思一下2008年金融危机,首要问题是为什么评级机构当年没有看到次级债(CDO)的风险。答案并不是因为评级机构当时没有充足的数据。症结在于他们设计的风险模型中并没有考虑到不同市场价格变动的相关性,比如纽约和芝加哥房价同时下跌给CDO带来的风险。有了AI就不再会出现这种问题,因为可以从更多维度对数据做出分析。“已知的未知”领域,将仍然是人的领地。这个领域并没有大量数据,无法帮助AI做出好的预测。相反,人却能利用小数据来举一反三。当然这也恰恰是机器学习发展非常快的领域,如果机器能够学会如何像人一样学习,智慧会进一大步。
 
  第三个领域,也就是“未知的未知”领域,人和机器都束手无策。黑天鹅就是一种未知的未知,人和机器都很难预测。原因很简单,AI从本质上仍然是利用历史数据预测未来。如果某个新物种,从来就没有人见过,又何从预测呢?比如说,共享音乐Nap-ster给CD行业带来的毁灭性打击就很难预测。
 
  最后一个领域,就是“已知的未知”领域,AI和人一样容易犯错,而应用AI会带来更大的风险,因为AI可能飞快地将错误放大千百倍,让人措手不及。所谓已知的未知,意思是我们已经能做出了预测(不管是人还是AI),但是却并不知道背后真正的原因,甚至有时候以为自己知道原因,其实却是错的。
 
  国际象棋大师卡斯帕罗夫在《深度思考》中就提到一个早期研究国际象棋的AI犯错的例子。AI在看到大量棋谱之后,发现很多象棋大势在牺牲王后之后,往往很快就能有致赢的后手,所以这种AI会开局就选择放弃王后。这就是在“已知的未知”领域内犯错的例子,因为它把相关性错认为是因果性,把现象——好的棋手有的时候会丢弃王后——当做了制胜的原因。
 
  有了这四个象限的分析,人与机器的差别也就非常清楚。简单重复的劳动,甚至一些中等的职位,比如起草标准合同的律师工作,都会被机器所取代,因为有着大量数据可以培养出强大的AI,但是在探索未知领域,人类仍然有巨大的潜力。
 
  人工智能与职场风险
 
  乔布斯有句名言,电脑是思想的自行车。如果说电脑加快了思想的运算速度的话,AI作为新一代的通用科技,又将如何推动思想的发展?一定会让很多人从简单重复的劳动中解放出来,有机会让更多人释放出更多的创造力。
 
  从这一视角分析AI可能给人的生活和职场带来的改变,就不必简单地去担心工作被自动化所代替,而是要从整个工作流程的角度看AI到底会给职场带来什么样的改变。和过去的技术迭代一样,AI一定会取代一些工作,或者一些工作的一部分,但同时也一定会创造一些新的工作机会,或者把一部分既有工作变得更吃重,所不同的是,这样的改变速度更快,频次更多。
 
  先举一个商学院录取流程的例子来看AI如何重塑工作流。商学院MBA的录取流程可以分拆成三个阶段,不同阶段需要配置不同的资源。第一步是推广,也就是鼓励学生申请,让更多潜在学生了解MBA课程。第二步是评判,也就是对申请人进行筛选,通常需要大量人工去做。第三步是给出结果,尽可能鼓励合格的申请人接受录取通知书。一个传统的MBA录取流程,会在第二阶段配置大量有经验的人力,而且会限制推广,担心人力无法及时处理大量的申请。

上一篇:未来,AI会掌控世界吗?

下一篇:没有了